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ABSTRACT 

We discuss diffractive production in the context of two-component 

models. After defining the class of models that we consider and 

discussing their general properties, we develop integral equations for 

the generating functions of diffractive processes. We consider single 

and double diffraction and two fireball production. We investigate 

the behavior of the partial cross-sections for n-particle production in 

all three cases and obtain a successful fit to recent data. 
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I. THE TWO-COMPONENT MODEL 

Let us start the discussion of this model by defining a “proper” 

production amplitude as any amplitude which cannot be separated into 

two disconnected parts by the elimination of a Pomeron exchange. We 

use the word Pomeron to refer to any j-plane singularity which passes 

through (or very near to) j = i.~at~t::=,@... The,properramplitude doe8 not 

haveanylsuch singularity in.any t-channel. 

The main assumption of the two-component mode.ll*is that the sum 

of all prooer contributions to the s-channel unitarity equation builds up 

a Pomeron exchange (as well as lower exchanges 1 in two-body scattering. 

This is symbolically shown in Fig. 1. We use the open ellipse to 

designate a proper production amplitude, and the wiggly line to represent 

Pomeron exchange. 

Improper production amplitudes can also be referred to as diffractive 

mechanisms since they involve Pomeron exchanges. Three such ampli- 

tudes are shown in Fig. 2, and their corresponding contributions to 

s-channel.unitarity are shown in Fig. 3. The unitarity equation can be 

written symbolically in the form of Fig. 4 where we showed explicitly 

the elastic and proper contributions. The remaining diffractive productions 

build up the rest of this equation. Some such terms were shown in Fig. 3 

and many more exist. Examples are more iterations of Pomerons, or 

replacement of some Pomerons in Fig. 3 by lower lying,trajectories. 
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Thus Fig. 31 shows a triple-Pomeron2 contribution which we may 

denote by PPP. If one chooses a non-leading component in the proper 

production amplitude one has a non-scaling diffractive term PPR (where 

R denotes a non-Pomeron Regge singularity). Such a term has to be 

added to Fig. 4 under the general diffractive category. Moreover, 

whereas an RRP term is already included in the proper contribution 

(Fig. i), we should not forget that interference terms such as PRP can 

also occur and we add them to the general diffractive category. 

The first question one may now ask is whether the various 

wiggly lines, that we called Ponerons, refer always to the same 

object. In general that must not be the case and we may conceive of 

different j-plane singularities building up the diagrams of Fig. 3. It 

is however easier, and perhaps also more appealing, to assume that 

all of them are the same moving pole. This leads to well known 

problems3 since further iterations of Pomeron exchanges will lead to 

violations of the Froissart bound. One way out41 ’ is to assume that 

the pole generated by the proper amplitudes, Fig. 1, lies below j=i at 

t=o. Then one interprets the diagrams of Fig. 3 as involving two 

different Regge poles - one representing the sum of proper contributions 

and the other is the “true” Pomeron. defined by the unitarity equation, 

which turns out to lie above the original moving pole at t = 0. An 

alternative approach is to concede that the assumption of a Pomeron 

pole at j = *is wrong but to use it nonetheless as an approximation. 
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Thus we may interpret Fig. 21 as representing a triple-Pomeron pole 

together with the sum of all possible absorptive cut corrections. If 

however the absorptive correction is small, 6 the approximation of this 

amplitude by the triple-Pomeron pole term follows. 

We will not try to build a complete and consistent theory of 

diffraction. Our interest lies in investigating the expected structure of 

diffractive distributions for the three different cases of Fig. 2. In the 

equations which we develop in the following section we use the Pomeron 

pole approximation in order to obtain explicit results. Their modifi- 

cations for other kinds of factorizable singularities are straightforward. 

In more general cases the corrections can become more complicated 

and change the structure of our integral equations. 
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II. DIFFRACTIVE GENERATING FUNCTIONS 

In the present chapter we develop formulas for the generating 

functions of the diffractive production. processes in Fig. 2. The 

generating functions are defined by 

Q(s, z) = C zn u,bl 
n 

(1) 

where Q(s, z=f) = c(s) is the contribution of a particular mechanism to 

the total cross-section. n designates the number of particles produced. 

We will use throughout the paper the longitudinal strong ordering 

description of the production processes. The particlesare assumed to 

have low transverse momenta and the (invariant-mass)2 of the various 

amplitudes are defined in Fig. 2. For case I - the triple Pomeron - 

we can then write 
S r 

QI (s, z) =2 dsi BI(:) G(s,, z) 

1 1 
(2) 

Q is the generating function for the sum of proper amplitudes of 

Fig. 2(I) from which we eliminate the triple Pomeron coupling g(t). 

Thus the Pomeron-particle cross-section is g(t )a (s, z =i) = g(t )L(s ). 

This coupling g(t) is included in BI. Using a pole approximation one 

can write 

BI(“) = 1 fdt 
16vs j 

s’+~~‘~ 1 P(t)\ 2g(t) (3) 
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where (3(t) includes the coupling of the Pomeron to the external particle 

and the signature factors. Using a parameterization 

/p(t)\ =pebt g(t) =gect (4) 

one obtains the result 

BI(s:) = 
1 

2cr’ Ins + 2b+c 

and the equation for Q reduces to I s*,z) &I’“~ Z) = 3-f s ,,,“r:& ln(s+ si 

(5) 

(6) 

A more elaborate derivation of the integral equations for cases 

I-III is given in the Appendix in which we show how they can be incor- 

porated inthemultiperipheral model. We use a dimensionless notation 

(in scales of s = 1 GeV’) and we suppress also factors of rnc that 
0 

appear in rapidity definitions. Thus denoting Y = Ins, yi = In sl, we 

see that Eq. (6) is an integral over yi leading to a cross-section of 

the form 

c1 
2b+cY)~ ., a’#0 

(7) 
P2@ y 

2% cr’ = 0 
1671 

for the Pomeron pole model. This is the welIrknown triple Pomeron 

result. 
2 
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Using the same assumptions and techniques it is straightforward 

to write the equations for the other cases. In case II - the “two jets” 

production - we find 

‘+ =&I’,’ @(s-s1s2)BII (&)dsids2~(si,z)&s2,z) (8) 
1 1 

Strong ordering implies s > sl, s2, $s- > 1. The integrations on si 
12 

and s in Eq. (8) are carried out over the whole region 1 < s is2 <s 
2 

subject to the condition S/S s > 1. 1 2 
It is important to note that in the 

derivation of the analogous integral equation for the multiperipheral 

model with only one exchange (see Appendix) we hope to limit the range 

of integration to non-overlapping regions of rapidity, e.g., O<ln si 2 < 

$Ins in order to avoid counting the same diagram several times. In 

Eq. (8). however, grepresents the sum of proper amplitudes which do 

not involve Pomeron exchanges, as postulated in the beginning of our 

discussion. Hence no multiple counting equestion arises and the integra- 

tion has to be carried out over the whole range described above. 

Using a conventional Regge pole representation one finds 

1 
BII(s) = - 

dt s2+2@‘t 2 g (t) =s gz 
16~s 16~ 2a’ln s+2c 

Hence one obtains the equation 

(9) 

QII = &$J ecs-si- s2)? 2 20,1n~; +2c 1 
Q(Si,Z)Q(S2, z) (10) 

sis2 
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and the solution 

_ g232 r 1 7 
“II 

-2 1(2c+2 
11h3 ! (2ru’) 

cv’Y)ln(1 +?Y)-$7 I 

j 

- I’ 
2-2 

.gal 
, 

16ir3 ‘z;;; Y In (1 + k Y) CY’ #O 

Y >> 1 2-2 
F -& Y2 (Y’ =O \ 
16n 

(11) 

Similarly one obtains for the double diffractive production - 

case III - the equation 

- s1s2 e(sls2-s) dsl ds2 BI($. BI(:) a ( -, z) (12) 
S 

1 2 

Here BI are the same functions that occur in case I. However zrefers 

now to a Pomeron-Pomeron production process. As before, the 
& s s 

triple Pomeron coupling, g(t), is included in BI. Therefore Q( s u,z=1) 

equals 1 in the case of a pole singularity. In this case BI is given by 

Eq. (5), and Eq. (12) turns into 

B(s1s2-s) 1 
25’ lii :+2b+c 

1 

1 .- ,z) 
~a’ In :+2b+c 

(13) 

The contribution of double diffraction to the total cross-section 

will then be 
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where 

I(ln s 1 (14) 

;y dyi >:, dy ‘, 
1 

I(Y) = 2 2b+c+Zru (Y-y,) 2b+c+2a’(Y-y2) 
0 1 

(151 

< 2&&,+,) In (’ + $i y, 

In the case of LY ’ = 0 one finds I(Y) = y 
2(2b2+cj2 

Let us turn now to a numerical estimate of the value of the various 

cross-sections. We will use for simplicity the case of a fixed pole 

(0’ = 0). It may be safely assumed that a calculation of a mwingpole 

with small CX’ will give similar effective results as long as Y is not too 

big (see Fig. 5 below for a comparison between calculations with 

(y’ = .3andcv’ -0). From the equations developed above we find, for 

cc’ = 0, 

- P4g2 
o1 

- P2cG y 
o11 o111 

y2 
16T2 2b+c (16rr2j2 2(2b+c)’ 

(16) 

All these expressions grow with In s whereas the Pomeron pole of 

Fig. 1 leads to a constant contribution. If one nevertheless assumes that 

this constant represents the main bulk of non-diffractive (proper?) cross- 

sections we may write 

0 = n. d P2 
P4 1 o’z- 

el 16rr 4b (17) 
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where o ;l is the contribution of the proper amplitudes to eel. Using 

pp data9 2 m the neighborhood of s = 1000 GeV we take o 
n-d. = 30mb 

-2 -1 and b = 2.5 BeV . Equation (17) implies then p = 8.8 BeV If we 

further assume that or = p, c = b and choose of = 2.5 mb we find that 

aII E 0.8 mb and eIII = of 21 2ii2 = ,O. Iznb. Both values are pretty-’ 

small.: Note though that oaIi depends.jon .the value of c for ~which-x@h;Pve 

no theoretical estimate. The choic~e c+b isarbitrary and eII can bejc 

increased. considerably by letting, c’ < < 1.. 

However in such a case the corresponding amplitude will contribute 

significantly to high t values. This may clash with the assumption of 

low transverse momenta which we implicitly used throughout the 

discussion. Hence the formulas have to be modified in a model 

dependent way in the case of strong two-jet production 0 

It is important to note that a fixed pole model cannot be continued 

to the next order in g since further couplings of the Pomeron will violate 

the Froissart bound. Hence we cannot regard such a fixed pole Pomeron 

as the true result. One may now ask if this situation can- be remedied 

in a moving pole case. Looking at oI we realize that the energy behavior 

is new modified into a In Ins increase. This may be further modified if 

the coupling g(t) vanishes at t = 0.2 Thus choosing g(t) = -tge ct equation 

(6) will change according to Qf + -,$c &r and cI will have a finite limit 
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oII can be calculated in a similar fashion by changing QII - 4 - 

and the result is still increasing like Ins: 

The analogous modification of cIII turns out to be 

,g2p4 1 
o111 (167~‘)~ [2cr’(2b+c) 1 2 

(20) 

Thus we see that the vanishing triple-Pomeron coupling changes the 

behavior of aI and VIII to constants. However oII continues to grow 

with In s. This;result is characteristic of the two component approach. 

As a naaki&r of fact higher iterations of the Pomeron lead to correspond- 

ing higher Y powers thus rendering such a theory of sirnfle poles invalid. 

Summing a series of such Ins power terms (in the leading log approxi- 

mation) one obtains for the two body scattering amplitude a leading 

singularity which is higher than the original pole. 5, 6 In view of the 

smallness of o II one may expect this correction to be very small, and 

so it is in the model of Ref. 5 which starts with a pole below j = 1. As 

we already mentioned above we do not try to develop a complete theory 

of the Pomeron. Rather we would like to use the pole picture as an 

approximation m order to derive (in the next section) some information 

about the expected partial cross-sections. Although we will use the pole 
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formulas developed above, we will keep in mind the possibility of 

logarithmic corrections. 

Finally we would like to mention that not;+only decreasing cuts are 

possible but also higher singularities like double and triple poles at j = 1. 

Such singularities could be factorizable and would in this case fit into 

our formalism. If each Pomeron in Fig. 2 has an associated increase 

like (Ins )“t we should obtain 

C ni+l Cni+2 Fni+2 

*I 
- (Ins) 1 o11 - (Ins)’ OIII - (Ins)’ (21) 

in the case of fixed singularities. The results change within a Ins factor 

for moving singularities. Some of these terms violate the F’roissant 

bound and cannot therefore survive asymptotically. 

It still remains to be seen experimentally whether the non-diffrac- 

tive cross-section on d is constant in the very high energy regions . . 

and 01 is responsible for the Ins increase. If that is not the case 

modifications like Eq. (21) may be expected in the observable energy 

ranges and analogous corrections will affect the distributions discussed 

in Section III. 
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III. PARTIAL CROSS-SECTIONS IN DIFFRACTIVE PROCESSES 

Let us use the equations discussed in the previous section, in 

order to determine the distributions of n particle production in a 

diffractive process. These distributions depend strongly on the 

functional behavior of the Pomeron - the various functions denoted by 

B in the integral equations. We will use the Regge pole forms discussed 

above. Another crucial factor is the form of the generating function of 

the proper_praduction~ processes. ‘We chossertoc:discussraPPotssan 

distribution, namely 

G s,z) = z n 
n 

L+,z = z20 expf (2aR-Z+Gz)lns} 

0 = o (Gllnssr)n-2 
S2aR-2 n (n-2)! 

which is a simplified multiperipheral distribution for a chain dominated 

10 by the exchange of a fixed pole eR. The corresponding total cross- 

section will have a power dependence, E.(s) = 5s 5-l where 

;r-1=2a -2+G 
R 

(23) 

and the leading singularity of Fig. 1 is obtained for G = 1. We will 

nontheless leaue &free in order to see interesting effects that may be 

expected from large non-leading singularities. We will also comment 

on distributions which are different from Poisson. 

Let us start with single diffraction, namely the mechanism we 
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denoted by I - the triple Pomeron. Using Eq. (6) we find for the n- 

particle cross-section (where n includes also the leading particle) 

SM doiM(s, si) do*,? M-3 (Ins )jbre3s 2aR-2 
oivlb,sM) = ,~ dsi dsl; 7 =k 2 7~-3): 2b+c:2u’l;(b,si) 

(24) 

on@, s M’ 
is a function of the total energy ds and the upper limit of 

integration S M’ Since the triple-Pomeron representation is meaningful 

only over a limited region x > 0.9 or 0.85, we should correspondingly 

choose s M < 0.1 s or 0.15 s. 

We see from Eq. (24) that the s-dependence is at most logarithmic, 

as appropriate for a diffractively produced process. In the case a< = 0 

one obtains, upon performing the integration, the closed form 

,..:diz- 0 
n i6T2 (2b+c)(2-2cuR) 

y&Y-2, (2-2crR)lnsM) 

(hI-3)! 

(25) 

where y is the incomplete gamma function. This form can be approxi- 

mated by 

CL 
16~ 

cr- n 

I 

cr 
2 (2b+c)(2-2aR) 

(1 _ ALL ,n-3 
2-2ruR 

for n-3 << (2-2aR)lnsM 

(26) 

& G Gn-3 (In sM )n-2 

(n-2)! ‘M 
-(2-2nR) 

i6ir2 2b+c 
for n-3 >> (2-2cuR)lnsM 

In Fig. 5 we show the results of a numerical evaluation of Eq. (24) 

using (Y = 1 for the two cases Q’ = .3 and cy’ = 0. on are plotted vs. 
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yM = lnsM. We note that for reasonable values of the parameters the 

LY’ = 0 approximation is very good. Thus in Fig. 5a we note that since 

Y = 7. 3 we obtain yM = 5 by the restriction x > 0.9. In this range 

Fig. 5a iszweU:approximated.by-Fig:..5b; The latter is independent 

of Y and shows the characteristics expected from the asymptotic 

approximations of Eq. (26) for E = 1, namely an asymptotic equality 

of the various cn(in the limit n << yM) and a rapid fall off if n >> yM. 

The fact that asymptotically all on are equal is a property of the triple 

Pomeron amplitude and follows directly from the multiperipheral 

character that we assumed for the proper production amplitudes. ?,ii’ 

Thus if we change from a Poisson to a Gaussian distribution 

Frn(Si) = 
E 

-zze (27) 

and maintain the property tits 1) = G In s *, we also find that the integrated 

multiplicity distribution in the PPP case is constant in n if n < < CX~-G- 
2. 

*. This means that the same result is obtained as long as the peak 

of the distribution (27) is weill confined within the range of integration 

in Eq(24). At higher n values the multiplicity distributions fall rapidly 

because the integration of Eq. (24) will involve only the tail of the 

Gauaaian distributions. 

It is very easy to see qualitatively how this result comes about. 

1 The triple Regge formula leads to -& - - . If one makes the drastic 
1 si 
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approximation n do = c lnsl one obtains (sn z - = const. dn 
::: Wff 

one changes 

the InsI dependence to, say, n = cs: one obtains a mild decrease: 

1 0 Cc- 
n n’ 

At available NAL energies we are at yM = 4; Fig. 5 shows us 

that the asymptotic form does not apply yet and, indeed, a variation of 

~~ with n is observed experimentally 12 and looks very much like the 

structure of Fig. 5. However when looking at data we should not 

forget that in addition to the PPP production mode we may encounter 

other diffractive terms. We turn therefore to $ brief discussion of 

the PPR case. 

Using the same equations to describe a PPR production mode, we 

obtain from Eq. (26) an exponential damping in n by allowing Cu < 1. 

Hence we find that the PPR term contributes a constant diffractive 

structure which dies out quickly with n. This is the type of diffraction 

incorporated in many models 13 and is very different from the asymptotic 

constant pattern of PPP production discussed above. Once again one 

can reach this 11 conclusion by using the simplified model in which 

n =clns I. Since in the PPR amplitude -d$- - G-2 
% 

we see that 
1 

0 _ s G-1 +I) 
=e 0 n 1 Here we note that a big differencezeTists between Ins 

and power dependence since if n=csl we obtain on,- n 
(5 -1) 

. Ii% 

particular the nova model result 
14 -2 1 

on-n is obtained for 6 = E = 7 
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It is straightfoward to continue from single diffraction to double 

diffraction - case III. Using once again Eq. (23) for a we obtain 

III 1 P4g2 s2-2’rR Cn-4 
y- 
(” 

-e-2aR)yi 

o,(s) = e 
v2 (16~)~ (n-4 )! / dy 

J 1 2btc+2a’(Y-yJ ’ 

0 

Y -(2-2QR)y2 
. 

h 
dY2 e 2b+c+2cu’(Y-y2) (y1+y2 - YP-4 

-Y1 
which gives in the case cx’ = 0 

dk III n-4 n A(G 
= q- 2-zcYR) y (n-3, (2-2aR)yi) 

(28) 

(29) 

1 where A = 2 P4ci2 1 

i-r (i61~)~ (2b+c)2S 
This differential distribution shows of 

course the same ,character as the integrated distribution of Eq. (25). 

Once again one finds the asymptotic dependence or independence on n 

appearing if (r is smaller or equal to 1 respectively. Equation (28) 

can be integrated over the whole y range to yield the generating function 
d 1 

P 

III 
Q(z) =Aa4 e 

(2-2aR)(z a-l )Y, 
-1 

((za-1)(2-2aR))’ 
I 

(where a = 1 - 2’iz ). Choosing now 
R 

Y -:\ 
(za-I)(2-2aR) (30) 

G = 1 and CY 2 
R = z one finds that 

this distribution has the following characteristics: 

<n> =$Y+4 
f2 = 18 

Ly2 - 4 
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These formulas for the moments change somewhat if one assumes 

LY’ f 0 because the shape of the distribution changes. The important 

thing to test is therefore the variation of the distribution in n rather than 

the value of the corresponding moments. 

It may be expect&i that double diffraction will be a negligible 

contribution to the total cross-section, as already remarked in the 

previous section. On the other hand the two jet\productionniay :--ix 

be somewhat bigger. Let us examine the multiplicity distributions in 

this case (Fig. 2111. Using P&sson distributions for the proper ampli- 

tudes we find 

dofiI 1 gzpZ Gn-4 (si’s2~2aR-2 

ds,ds 
2 

2c+2cu’ln(s/sls2) (1nsls2)n-4 (31) 

The variables s1 and s2 designate the (mass)2 of the two jets;‘~ :~:j. 

Using 0’ = 0 one can simply integrate on one variable to obtain 

n-4 
2.2lLL.G 

dsl ‘1 16rr3 2c (n-4)! y(rn -1, (2-2aR)(Y-Y1, 

do 
(32) 

The form of n dan 

dyl 
= s - IS displayed in Fig. 6 which shows the 

idsI 

results of a numerical integration of Eq. (31) using CY’ = .3. 
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In Eq. (32) we observe that in the limit yi - 0 only the term with 

1 = n - 2 contributes. This leads to the same asymptotic intercept 

for all dgidyi. Figure 6 displays this type of behavior for low n 

values. Note also that for low n one finds a concentration of the 

distribution year yi = 0 whereas for high n a broad plateau developes. 

This result is characteristic of the chain structure of the multiperi- 

pheral model. In the high yi region common dampting of si 
2cuR-2 

becomes important as can be seen in the figure. 

in order to investigate experimentally the two-jet diffractive, 

production one may select all exclusive events which show a rapidity 

gap which is bigger than some specified number A. For high<, values 

of A (say 2 or 3) we have a high probability of finding diffractive events. 

After subtracting the elastic and single diffractive events one can look 

for the features of the two jet model. In plotting Fig. 6 we used an 

integration only up to y2 < Y-yi - A where A = 2. The effect of such a 

procedure on Eq. (32) is to replace Y-y1 by Y-yi-A in the argument of 

the incomplete gamma -function. 

Each of the two jets has characteristics similar to those seen in 

the jet of single diffractive production. Using the same simplifying 

argument as in the discussion after Eq. (27), we note that for n << Ins 

we find doI’/ dyldy2 li: o II s-:: 4 
= const. 

“I’“2 
Hence we should obtain of - n 
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asymptotically, which leads to the In 2 s increase of o II in Eq. (11). 

The curves of Fig. 6 indeed show an increase of o with n for the n 
low n values. 

Finally we would like to make two remarks that concern all our 

results. The first is once again about the pole assumption. The 

formulas were derived for a moving pole withresidues that were 

exponential functions of t. Most of the asymptotic results come 

actually from the cy’ = 0 term. Changing from this picture to any other 

one, suitable modifications should occur. Thus if the triple Pomeron 

vertex decouples at t = 0 we have additional Ins denominators: never- 

theless we expect the same qualitative results to emerge as long as 

the energy is not too big. Our equations show which results depend 

on the s-behavior of the Pomeron, and which reflect the character of 

the non-diffractive (proper ) distributions. It is therefore straightforward 

to find the modifications that arise by changing these elements of the model. 

The second remark is that we did not try to distinguish between different 

kinds of particles. In order to connect our.resultst~o:~e~neasurad 

cross-sections for, elg., a fixed number of prongs, one has to add 

specific assumptions about the structure of the production process. 

Nevertheless the qualitative features such as the constant or power or 

exponential dependence on n should be strongly reflected also in the 

corresponding prong distributions. 
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As an example of this last point we present in Fig. 7 a comparison 

between recent diffractive pp data at-ti plab = 300 GeV 12 and a very 

simplified model based on the PPP distribution of Eq. (24). Assuming 

that the outgoing particles are mainly two protons and equal numbers of 

the three kinds of pions we identify nc = $n + 1) and on =0 n-l +a +o n n+l * c 
The resulting predictions are shown in Fig. 7 for the choice of parameters 

Y =6.3, (Y’ =. 3, b = c = 2. 5 BeVm2. The four and six prongs data 

are fitted perfectly. The 8 - 10 prongs lie somewhat higher than 

expected. This may reflect a deviation; from the assumed Poisson 

input. The authors 12 quote an upper limit for the two prongs inelastic 

data at x z 0.9 (y, = 4) of 1.1 * 0.2 mb which can be well accommodated 

by this model. It is amazing how good a fit one can obtain without 

resorting even to a PPR component. We do not claim that this means 

that all simplifyingi assumptions that we made all along the way are thus 

proved to be correct. The complete picture of diffraction will presumably 

turn out to be much more complicated when all its details are revealed 

experimentally. Nevertheless the fact that it is easy to obtain such a 

good fit to the data is an indication that the theoretical expressions 

deptctt correctly the basic experimental trends. 
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APPENDIX 

In the appendix we derive integral equations that can serve as a 

reformulation of a simplified multiperipheral model. The integral 

equations which we use in Chapter 2 are based on the same forms which 

we present here. The equations involve the generating function 

Q(s,t) = E zn cm(s) (A-1) 
n 

which is normalized to the total cross-section Q(s, z=1) = cr. We will 

first discuss the derivation of the Bathe-Salpeter equation. 

We start by assuming that the n-particle production amplitude 

(for simplicity we consider only one type of particles) is given by” 

T 2+n(p1p2q1. o . q,) = X&s t) T.2+n-1(~4> pi-q -+ q2.. as,) 
1 

+x2@, 

0 
bn 2 

i 

(A-2) 

where s 0 = 1GeV2andsI = (p1+p2-q1 )2. An example is 

x&t) = y(t) Aa(t)p(t) 
1 % 

x2$5* t) = y(t) (~PyW 
0 sO 

If cu(t ) = (u( 0 ) + a’t we have a multi-Regge model. The case CY ’ = 0 

generates through s-channel unitarity a moving Regge pole in the two 

body scattering amplitude and if (Y’ # 0 one obtains a moving cut output. 

s-channel unitarity connects the absorptive part of the two body 

amplitude 
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A(s,t) = Im Tel(s,t), A(s,o) = so 

with the n-particle production amplitudes 

(A-3) 

A(s,t) =A2(s,t) ++ 2 co id@ 
:li 

T 
n=3> 

2-n(ptp2-ii.. .q,) T2, ,(P;P;+~~. . -9,). 

(A-4) 

A2(s, t) is the contribution of the two penticle (elastic) intermediate 

state 

, dtidt2 
A2(s,t)=--- 3 

.9(-h) 

~6a2s~-~d-k(t1,t2,t) 
(k2) (A-5) 
sO 

Note that T2 2 is determined by X2 in Eq. (A-Z) and is not identical 

with the resulting Tel whose imaginary part is determined by (A+)...::.o 

We do tit+&einptto.usehere.ax&ootstrap multiperipheral approach. 

Let us denote the n-particle contribution to Eq. (A-4) by An: 

,c- dsl 
A,(s.t) = $; - 

.. si 
BI(;, t) Anel(s. t) 

1 
(A-6) 

where 

::i 
BI(s,t) = X1(S, t,m1 b> t,) (A-7) 

The generating function is obtained by 

&=@a n =$z” $ A,(s,O) 

and obeys therefore the equation s 

Q(s,z) =Z’LT +2 
2 J’ 

dsl B&-, 0) Q(s,> 2) 

1 1 

(A-8 1 

(A-9) 
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In the fixed pole model 

“R aR 
X1(s,t) = Y(t) P(t) s X2(s.t) = yZ(t) $3 

we obtain ZCUR-2 

= ;A2(s, 0) = si6rr dt [y(t)j4 z GOs 
2aR-2 

O2 

and Eq. (A-9) becomes 

ZG 
Q(s,t) = z202 +> 

;-; dsl 
- 

= i 
f- 1 

2CYR-2 

s1 1 
Q(s ;a) i 

1 
Bib 1 2czR-2 30 where we used - = Gis . This leads to the well known 

s 

Poisson distribution Gi n-2 

an(s) = Go 
(;lns) 2czR-2 

(n-2)! t! 

Q(s, z) = Go z2 s 
2CYRR-2 +-+-In : ; 

(A-10) 

(A-l*) 

(A121 

(A-13) 

It is straightforward to check that (A-13) is the solution to (A-12). 

In looking for a formula for the description of the single diffractive 

mode, Fig. 21, we used the same type of integral equation as (A-9). 

The corresponding formula is Eq. (2) that uses in BI a Pomeron exchange, 

and builds the diffractive generating function &I from the non-diffractive 

z. The analogy of y(t ) is P(t) and corresponding to p2(t) one finds there 

go ). To establish the formulas for cases II and III let us look for 

alternative expressions to Eq. CA-9 ). An alternative approach can be 

obtained by starting with a fixed point of division into right and left 

in rapidity. For example, let us deal separately with particles produced 
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with either positive or negative c. m. rapidity whose invariant masses 

will be denoted by si or s2 respectively. If we try to develop an integral 

equation for the production of n-particles we reallke, that it has to be 

separated into the following terms: 1L1R(for n=2), lL(n-l)R, (n-1)R1L, 

n’R(n-n’)L for n’ z 2. Here L and R denote left and right respectively. 

Using the same assumptions as before we can then write the following 

equation 
dS ys -4-c 

Q(s, z) = z2a +22 1 
2 i 

ds 1 BI(;)Q(sf z ) + 2 
il 

ds ds B ( -L) . 
TIS 

1 1 TTS 1 1 
1 2 II sis2 

(A-14) 
-x Qb,, z) Q(s2, z) 

The last term corresponds to the production of two groups of particles 

whose corresponding (mass)’ are s1 and s2 (notation as in Fig. 211). 

BI is the same function as defined above and BII is similar but for the 

change Xi - X3 = p2(t)s @R. m its definition (see Eq. (A-7)). The fixed 

pole model leads then t;; 

Q(s, z) = z20 
2zGi 

I 

dsl 
G-) 

2czR-2 G 6 dT 

2+-Y - s1 s1 
Qb,, z)++ 

77 li 

dsi ds2 
--. 
s1 s2 

1 1 1 
2cu -2 

. (s) R Q(s,,z) Q(s2,z) 
(A-15) 

sis2 
BII(s ) 20 

where we used - R-2 = G2s . Gi2 
s 

Using the equality G2 = -, expected 
GO 

from the definitions of the couplings given above, we find that the solution 

to Eq. (A-+5) is indeed given by (A-12). 
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In order to derive such a second order equation in Q it is necessary 

to fix a division point in the double integral. The last term in Eq. (A-14) 

and (A-15) corresponds to an exchange between the two production 

amplitudes that is centered around y, m = 0. If we were to integrate 

* Y’ over the whole region - z 5 yi < y2 S z we would count the same diagram 

many times since the production amplitudes are built out of the same 

exchanges as the one appearing in B II’ This~ problem, does not exist 

in Eq. (8) since the BII there, is built out of Pomeron exchange which 

does not appear in ?$. Otherwise Eq. (8) is of the same general character 

as the last term in (A-14). 

Finally let us &urn to a formulation of the same problem in a 

third way in which we insist on the separation into two leading particles 

and an intermediate production pr’oces~s, Using the notation of Fig. 2111 

and adding separately two- and three-particle production we obtain 

+22 i’: 
S 

Q(s, z) = z20 3 
2 +z cr 3 s21T2 J / 

e(sls2- s) dsids2-BI+BI$=) * 
1 2 

1 1 

s1s2 (A-16) 
. &(,a z) 

The ree ng is the same that was used in the previous integral 

equation. The fixed pole limit leads to 

Q(s, z) = z2a 3 z2G2 1 
2 +zo +2 3 TI 

* (5) 
2ffR-2 s1s2 

1 
2 

Q&y-, z 

and, needless to say, Eq. (A -13) is the solution. 

s s dsl ds2 
m1s2- 53) - - G-) 

2cuR-2 

(A-17) 
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FOOTNOTES 

” 

The name “two component model” is used in the terminology of 

multiparticle production theory to describe models 1 which have two 

separate production mechanisms (i. e., multiperipheral + diffractive I. 

.Wause the same name, since we distinguish between proper and 

diffractive amplitudes. However we will identify more than two 

components in the partial cross-sections. Thus we will see that even the 

single particle diffraction process turns out to have different character- 

istics in a PPP and PPR mode, the first contributing to n particle 

production up to n - Ins while the second has a limiting structure in n. 

After completion of our work we became aware of three recent papers 

that advocate this approach and view the triple Pomeron amplitude as 

respondible for the Ins increase of the total cross-section at ISR 

energies. 6, 7,8 See also discussions of this point in ref. 11. 

TlWrpnechction is slightly modified if (Y’ # 0 in an obvious way. 

Further modifications are to be expected for different types of Pomeron 

singularities. 
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FIGURE CAPTIONS 

Fig. 1. Generation of a Pomeron by proper production amplitudes. 

Fig. 2. Three cases of diffractive production: I. Single diffraction, 

II. Two jet production, III. Double diffraction. 

Fig. 3. Contribution of the three diffractive processes of Fig. 2 

to the s-channel unitarity equation. 

Fig. 4. s-channel unitarity. 

Fig. 5. Numerical integration of Eq. (24). Choice of parameters 

Y = 7.3, ctR = 0.5, G = 1 (5 = I), b = c = 2.5 BeV -1 . 

Case a: (Y’ = 0.3, case b: cy’ = 0 (Eq. (25) ). Note that 

for low yM the two figures have the same structure. For 

high yM one observes in 5b the approach to the asymptotic 

value. 

Fig. 6. Partial cross-sections in the two-jet model. Choice of 

parameters: Y = 7.3, uR = 0.5, G = 1 (0 = i), a’ = .3, 

c = 2.5 BeV -1 , A = 2. 

Fig. 7. Comparison of a simple ‘PPP mad&l far -&tlgke CdHfmution 

(see text) with recent 300 GeV data. 12 
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